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Bi-instability as a precursor to global mixed-mode chaos
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Bi-instability, in contrast to bistability, is shown to generate unstable chaotic saddles prior to the onset of
chaos. The theory and numerics are applied to a CO2 laser model with modulated losses where unstable pairs
of saddles coexist, form heteroclinic connections, and allow mixing between local chaotic attractors to produce
global mixed-mode chaos.@S1063-651X~99!09906-7#
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One of the major areas of research and testbeds of
linear dynamics has been that of lasers@1#. Common to many
types of lasers that undergo bifurcations to chaos are op
bistability and hysteresis. Bistability results from the ex
tence of nonlinear interactions between the electromagn
field and population inversion, or gain. In most cases, bis
bility, or generalized multistability, is associated indirec
with the onset of chaos. This can be seen in examples suc
coupled chaotic class-B lasers@2#, modulated class-B laser
@3,4#, and fiber lasers@5#. Bistability and chaos also appear
other fields, such as subharmonic bifurcation in populat
biology @6#, chemical kinetics@7#, and neurophysiology@8#,
to name just a few. An outstanding problem in many of the
fields is the recognition and understanding of the role
unstable orbits in connecting bistability to chaos. The the
of the current letter is thatbi-instability, in contrast tobista-
bility, is the precursor to global chaos that has two fun
mental frequency components formed by the merging of
basins of attraction. We define chaos, which has two fun
mental frequency components, as global mixed-mode ch
Global mixed-mode chaos is observed experimentally
theoretically in a wide class of problems describing the
namics of systems involving large populations, including
ser and chemical dynamics such as those listed above.

Analytical methods to show the existence of chaos pr
the existence of transverse crossings of manifolds emana
from unstable periodic orbits. In general, there are very f
methods to carry out this procedure. One example is Me
kov’s method, but the drawback is that the conservative s
tem must possess certain symmetry requirements@9#. Fur-
thermore, the responsible unstable orbits may not be rel
to perturbations of a conservative system@10,11#. On the
other hand, numerical location and tracking of manifo
have progressed to where it is now practical to implemen
a computer@12#. To illustrate the origin of global mixed
mode chaos, we show the coexistence of two unstable o
of different frequencies in the modulated CO2 laser. Their
respective manifolds are tracked numerically and form a h
eroclinic connection, which is the origin of a chaotic sadd
~also an unstable dynamical object!. The chaotic saddle ca
form only in the presence of two unstable periodic orb
and it appears immediately after the two saddles coexist.
conjecture that the heteroclinic connection is the source
observed mixed-mode chaos.
PRE 591063-651X/99/59~6!/6658~4!/$15.00
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To illustrate the topological ideas of global mixed-mo
chaos, we consider the scaled equations for a single-m
periodically modulated class-B laser@3,10,13#:

x852y2ex~a1by!,
~1!

y85~11y!„x2d cos~vt !…,

where x is the population inversion,y the intensity,e the
dissipation parameter,a andb are related to the pump, andd
and v are the forcing amplitude and frequency@14#. For d
,1.57 the system exhibits small-amplitude period
SA-P(1) based chaos; the small-amplitude oscillations
Fig. 1 are transient vestiges of theP(1) chaos. Coexisting
with the SA-P(1) chaos basin is a large-amplitude period
LA-P(2) orbit. @The SA-P(1) basin and LA-P(2) basins
are shown by the light and dark gray regions of Fig. 3,

FIG. 1. Ford51.57, discrete-time series of trajectory showin
bursts from SA-P(1) into the LA-P(2) basin. This and all later
numerical computations usev50.9, e50.001, a556.0, andb
53.0
6658 ©1999 The American Physical Society
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PRE 59 6659BI-INSTABILITY AS A PRECURSOR TO GLOBAL . . .
spectively#. At d51.57 the system asymptotes to a larg
amplitude period-4 orbit in the LA-P(2) basin after display-
ing the bursting transients shown in Fig. 1. The bursts
P(2) based, while the small amplitude chaos isP(1) based.
Since the spectrum contains two dominant frequency c
ponents, the transient is a global mixed-mode chaotic tr
sient. For higherd, attracting chaos develops in the LA-P(2)
basin. This is followed byglobal mixed-mode chaos wher
the chaotic trajectory visits both regions of phase space
viously defined by the separated basins and hasP(1) and
P(2) dominant spectral components.

Bi-instability onset is seen by following the approach
Schwartz and Erneux~SE! @13# to construct a map describin
the pulsating solutions. While SE@13# considered the con
servative laser, our map will include the effects of dissip
tion when eÞ0. Newell et al. @15# also used the matche
asymptotics approach to derive a map for the two-freque
modulation of a fiber laser that included the effects of dis
pation. However, their map did not allow for easy analytic
investigation, and was used for numerical simulation on
As the details of the map construction were discussed in b
Refs. @13,14#, we show only the result~details will be pre-
sented in a future publication!

tn115tn22xn2 2
3 gxn

2 , ~2a!

xn115xn1 2
3 gxn

212d cos~vtn11!, ~2b!

whereg5e(a2b). The variablestn andxn specify the time
(tn) where the populationx reaches its minimumxn . Hence
tn112tn corresponds to the period of the oscillations.

Fixed-point solutions to Eqs.~2! occur whenxn and the
differencetn112tn is constant. Primary saddle and node s
lutions are single loop orbits of the formxn115xn5xf and
tn112tn5P(m),P(m)52pm/v,m51,2,3, . . . . With these
conditions and substituting into Eq.~2a! we obtain 2

3 gxf
2

12xf1P(m)50. Real values ofxf require that P(m)
<3/2g; thus dissipation limits the maximum period of su
harmonic solutions. Of the two solutions forxf one is singu-
lar asg→0 but does not appear untild5O(1/g). We will
focus on the regular solution that in the limitg→0 reduces
to the result of SE@13#:

xf5
2P~m!

2
2

g

12
P~m!21O~g2!. ~3!

A second existence condition comes from Eq.~2b!, where
we use thatucos(vtf)u<1; this requires (g/3d)xf

2<1. Equa-
tion ~3! is substituted forxf to obtain a relationship betwee
the forcing and the period of the subharmonic orbit given

d>dSN5
g

12
P~m!21O~g2!. ~4!

wheredSN defines the primary saddle-node~SN! bifurcation
~PSNB! point. A similar condition was derived by Schwar
in Ref. @10#, but here we are able to specify the conditi
explicitly in terms of the physical parameters.

For a single value ofxf there are two possible values oft f
differentiated by sin(vtf).0(,0). Linear stability shows tha
these correspond to the saddle and node solutions, res
-
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tively. The linear stability of these solutions can be examin
by substitutingxn5xf1Xn ,tn5t f1nP(m)1Tn into Eqs.
~2! and consideringXn andTn small. TheP(m) node solu-
tion is found to undergo a flip bifurcation, corresponding
period-doubling bifurcation in Eq.~1!, when

dPD5
1

v
1g2

v

288
P~m!4. ~5!

The resulting period-doubled~PD! solutions are defined
as xn125xn ,tn122tn5P(m). For g!1 the bifurcation
equation isd5dPD1(v/6)(x2xf)

2.
Equations~4! and~5!, shown in Fig. 2, provide a templat

for understanding the organization of the PSNB and PD
furcations; the map results agree qualitatively with numeri
bifurcation diagram of~1! shown inset. Wheng50.053 and
the forcingd is increased, the laser’s bifurcation sequence
the following: ~a! P(1)-PSNB,~b! P(2)-PSNB,~c! PD bi-
furcation of theP(1) node solution,~d! and PD bifurcation
of the P(2) node solution.

Based on the bifurcation analysis in Fig. 2, we exam
the dynamics before and after the onset of bi-instability. W
define d5dbi51.275 as that value corresponding to po
~c!, the ‘‘PD bifurcation of theP(1)-node solution.’’ Ford
,dbi the P(2) saddle is the only unstable orbit. Ford.dbi
there is the addition of theP(1)-flip saddle. The coexistenc
of the P(2)-regular saddle and theP(1)-flip saddle deter-
mines a region of bi-instability.

In Fig. 3 we examine the bi-instability just after ons
whend51.3. The dark gray region corresponds to the ba
of attraction for the LA-P(2)-node orbit. The light gray re-
gion corresponds to the SA-P(2)-PD orbit produced by the
flip bifurcation atd5dbi . In addition to the basins of attrac
tion, a picture of a chaotic saddle was computed using
saddle-straddle procedure described in Ref.@12#. It is ob-
served that points on the chaotic saddle asymptote to
SA-P(2)-flip saddle. This means that the stable manifold
the SA-P(2)-flip saddle is contained in the chaotic saddle

Before showing which manifolds are explicitly involve
in the creation of the chaotic saddle, we remark that
values ofd,dbi , the basins of attraction for theP(2)- and

FIG. 2. For a giveng, dotted curves indicate the value ofdSN

for periodP(m),m51, 2, and 3. Solid curves indicate the value
dPD. The inset is the corresponding bifurcation diagram for theL2
norm of Eq.~1!.
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P(1)-node orbits look similar to that of Fig. 3, but with on
major difference. Even though the situation is bistable, th
are no chaotic saddles or unstable objects which can pro
any crossings of manifolds. We reiterate thatbistability
alone cannot be responsible for the appearance of any c
otic dynamics.

Figures 4 and 5 are period-2 Poincare´ maps that show the
manifolds of the saddle orbits before and afterd5dbi . The
LA-P(2) saddle and its image after one period are over
with the arrows. From Figs. 3–5, we see that the stable m
folds of the LA-P(2) saddle define the basin boundary. Sp
cifically, in Fig. 4 for d,dbi, the left unstable manifold o
the LA-P(2) saddle spirals to the stable LA-P(2) node
~similarly for the ‘‘images’’!. The right unstable manifold
spirals in a complicated way to the stable SA-P(1) node.

Figure 5 shows the situation whend.dbi ~after the PD
bifurcation!. The two new1 signs in the center show th
new SA-P(2)-PD orbit and its image, resulting from the P
bifurcation of the SA-P(1) node. The new manifold is th
stablemanifold of the new SA-P(1)-flip saddle. A hetero-
clinic connection is formed by the intersection of this sta
manifold with theunstablemanifold of the LA-P(2) saddle.
The intersection points of these manifolds determine the c
otic saddle shown by the white points in Fig. 3.

As the forcing is increased, the dynamics become m
more complicated; Fig. 6 shows the manifolds ford51.57.

FIG. 3. Attractor basins or SN period-2 orbits~dark! and PD
period-2 orbits~light! for d51.3. The chaotic saddle is also show
in white. See Fig. 4 for other figure details.

FIG. 4. Ford51.0 coexistence of LA-P(2)-node solution and
SA-P(1)-node solution. The windows shown arexP(210,10) and
ln(11y)P(229,6).
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The LA-P(2) saddle is the same. However, now t
SA-P(1)-flip saddle and itsunstablemanifold are depicted
@contrast to Fig. 5 where the the SA-P(2)-PD orbit and
SA-P(1)-flip saddle’s stable manifold are depicted#.

The square highlights a homoclinic intersection of t
LA-P(2) saddle’s stable and unstable manifolds; similar
tersections exist but are not shown for the SA-P~1!-flip
saddle. Thus homoclinic intersections influence the dynam
local to any P(m)-node orbit and its subsequent perio
doubled orbits. However, the global dynamics are control
by heteroclinic interactions. The circle highlights th
reverse-heteroclinic connection of the SA-P(1)-flip saddle’s
unstablemanifold with the LA-P(2)-saddle’sstablemani-
fold. This corresponds to the injection of trajectories into t
LA-P(2) basin.The bursting seen in the discrete time-ser
of Fig. 1 results from the reverse-heteroclinic intersection

We now summarize the sequence of bifurcations and c
nections. A forward-heteroclinic intersection forms immed
ately at the onset of bi-instability,d5dbi , between a

FIG. 5. Ford51.3 coexistence of the LA-P(2)-node solution
and the SA-P(2)-PD solution from the period-1 branch. ‘‘Images
of SA-P(2) are shown only with1. The axis and ranges are th
same as those of Fig. 4.

FIG. 6. For d51.57, homoclinic intersections~boxed! for the
LA-P(2) saddle and the reverse-heteroclinic intersection betw
the SA-P(1) and LA-P(2) saddles~circled!. The axis and ranges
are the same as those of Fig. 4.
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PRE 59 6661BI-INSTABILITY AS A PRECURSOR TO GLOBAL . . .
period-2 regular saddle and a period-1 flip saddle. The
ward heteroclinic intersection is responsible for a chao
saddle resulting in complex transient phenomena in
SA-P(1) basin of attraction. For a larger value of the for
ing, a reverse-heteroclinic intersection is created. This ag
leads to complex transient phenomena as the trajector
injected into the LA-P(2) basin.

For d51.57 the bursting transient eventually decays t
period-4 orbit created by a PD bifurcation of the LA-P(2)
node. Asd is increased, a period-doubling route to cha
develops due to homoclinic intersections within this bas
As the chaotic attractor grows there is an internal crisis s
that some trajectories are injected back into the SA-P(1)
basin. This leads to sustained bursting as the preexis
reverse-heteroclinic connection sends trajectories back o
the SA-P(1) basin. The basins are now connected such
a spectral analysis of the resulting chaos has two domin
centers based on the original SA-P(1) and LA-P(2) saddles.

Localized chaos~restricted in phase space! develops in
both the SA-P(1) basin and the LA-P(2) basin due to ho-
moclinic intersections. However, global mixed-mode cha
such that the dynamics visits regions of phase space p
ously delineated by these basins results from the existenc
two saddles or bi-instability. The reverse-heteroclinic int
d
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section corresponds to a crisis event that sends the dyna
into the LA-P(2) regime. As the LA-P(2)-based chaotic
attractor grows in collides with the original LA-P(2) saddle;
this crisis event sends trajectories back to the origi
SA-P(1) regime @11# directed by the forward-heteroclini
connection. The resulting highly mixed dynamics is what
referred to as ‘‘global chaos’’ and as described in the int
duction such dynamics is seen both in numerics and exp
ments in a variety of applications.

The analysis done was in the neighborhood of a PD
furcation point. This suggests that the chaotic saddle may
observed in a prechaotic parameter range experimentall
observing the transient dynamics in a region near a PD
erating point.

Finally, Eqs.~2! are useful to understand the organizati
of the SN and PD bifurcations and will be explored further
a later report. The well-known Ikeda map@12# was derived
for a passive optical cavity. This contrasts Eqs.~2!, which
are derived for an active-laser cavity.
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