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Bi-instability as a precursor to global mixed-mode chaos
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Bi-instability, in contrast to bistability, is shown to generate unstable chaotic saddles prior to the onset of
chaos. The theory and numerics are applied to a [@a€er model with modulated losses where unstable pairs
of saddles coexist, form heteroclinic connections, and allow mixing between local chaotic attractors to produce
global mixed-mode chao§S1063-651X99)09906-7

PACS numbd(s): 05.45-a

One of the major areas of research and testbeds of non- To illustrate the topological ideas of global mixed-mode
linear dynamics has been that of lases Common to many chaos, we consider the scaled equations for a single-mode

types of lasers that undergo bifurcations to chaos are opticgeriodically modulated class-B lasg3,10,13:
bistability and hysteresis. Bistability results from the exis-

tence of nonlinear interactions between the electromagnetic x'=—y—ex(a+by),
field and population inversion, or gain. In most cases, bista- 1)
bility, or generalized multistability, is associated indirectly y' =(1+y)(x— 5 cod wt)),

with the onset of chaos. This can be seen in examples such as

coupled chaotic class-B las€i@], modulated class-B lasers wherex is the population inversiory the intensity,e the

[3,4], and fiber laserfs]. Bistability and chaos also appearin ..~ .
other fields, such as subharmonic bifurcation in populationd'ss'p‘”ltlon parametes,andb are related to the pump, ari

biology [6], chemical kinetic§7], and neurophysiolog}8], and o are the forcing ampl.ltgde and frequen@tl]. For§
to na?%/e[ jSISt a few. An outstgngiing problempinyman)fJ i(;?]these< 157 the system exhibits small-amplitude period-1
fields is the recognition and understanding of the role of2A-P(1) based chaos; the small-amplitude oscillations in
unstable orbits in connecting bistability to chaos. The thesi§id. 1 are transient vestiges of tf1) chaos. Coexisting
of the current letter is thati-instability, in contrast tobista- ~ With the SAP(1) chaos basin is a large-amplitude period-2
bility, is the precursor to global chaos that has two fundalA-P(2) orbit. [The SAP(1) basin and LAP(2) basins
mental frequency components formed by the merging of tware shown by the light and dark gray regions of Fig. 3, re-
basins of attraction. We define chaos, which has two funda-
mental frequency components, as global mixed-mode chaos 6
Global mixed-mode chaos is observed experimentally anc
theoretically in a wide class of problems describing the dy- ..
namics of systems involving large populations, including la- 4 'l
ser and chemical dynamics such as those listed above. c
Analytical methods to show the existence of chaos prove -
the existence of transverse crossings of manifolds emanatin :
from unstable periodic orbits. In general, there are very few 2

methods to carry out this procedure. One example is Melni-> | SR .. R ..
kov’s method, but the drawback is that the conservative sys-C ~iie . R Ry MBI
: . = i B S e Ty O
tem must possess certain symmetry requiremgitsFur- 5§ o 4R i ,ﬁ'q;.-.-.— ’-‘.’ﬁ“ .’?&;a-.az__.,&‘,'s‘:.‘,i‘.;&
thermore, the responsible unstable orbits may not be relate: - ,': P DRI IR
to perturbations of a conservative syst¢h®,11. On the R e, e

other hand, numerical location and tracking of manifolds
have progressed to where it is now practical to implement on
a computer[12]. To illustrate the origin of global mixed-
mode chaos, we show the coexistence of two unstable orbit:
of different frequencies in the modulated €@ser. Their -4 — 77— 71—
respective manifolds are tracked numerically and form a het- 0 200 400 600 800 1000
eroclinic connection, which is the origin of a chaotic saddle ,

(also an unstable dynamical objecthe chaotic saddle can time
form only in the presence of two unstable periodic orbits, FIG. 1. For§=1.57, discrete-time series of trajectory showing
and it appears immediately after the two saddles coexist. Wpursts from SAP(1) into the LAP(2) basin. This and all later
conjecture that the heteroclinic connection is the source ofiumerical computations use=0.9, e=0.001, a=56.0, andb
observed mixed-mode chaos. =3.0
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spectivelyl. At 6=1.57 the system asymptotes to a large-
amplitude period-4 orbit in the LA(2) basin after display-
ing the bursting transients shown in Fig. 1. The bursts are
P(2) based, while the small amplitude chao®isl) based.
Since the spectrum contains two dominant frequency com-
ponents, the transient is a global mixed-mode chaotic tran-
sient. For highe#, attracting chaos develops in the LA2)
basin. This is followed byglobal mixed-mode chaos where
the chaotic trajectory visits both regions of phase space pre-
viously defined by the separated basins and Rék) and
P(2) dominant spectral components.

Bi-instability onset is seen by following the approach of
Schwartz and Erneu$SE) [13] to construct a map describing
the pulsating solutions. While SR.3] considered the con- 0 0.02 004, 006 0.08 o1
servative laser, our map will include the effects of dissipa-
tion when e#0. Newell et al. [15] also used the matched  FIG. 2. For a giveny, dotted curves indicate the value 6§y
asymptoucs approach to derlve a map for the two_frequencipr perIOd P(m),m: 1, 2, and 3. Solid curves indicate the value of
modulation of a fiber laser that included the effects of dissi-Opo- The inset is the corresponding bifurcation diagram forlie
pation. However, their map did not allow for easy analytical™om of Eq.(1).
investigation, and was used for numerical simulation only. ) B . .
As the details of the map construction were discussed in botfVely- The linear stability of these solutions can be examined
Refs.[13,14], we show only the resulidetails will be pre- DY substitutingx,=X¢+X, ,ty=t;+nP(m)+T, into Egs.

sented in a future publication (2) and considering, and T,, small. TheP(m) node solu-
tion is found to undergo a flip bifurcation, corresponding to
tn+1:tn_2Xn_%7Xﬁv (2a) period-doubling bifurcation in Eq1), when
= 2 2 1 w
Xn+1 Xn+ 3 ’)/Xn+ 25C0$(1)tn+ 1)1 (Zb) 5PD=Z + ,YZESP(m)4 (5)

wherey=e(a—Db). The variableg,, andx,, specify the time
(tn) where the population reaches its minimum, . Hence The resulting period-doubletPD) solutions are defined
t,+1—t, corresponds to the period of the oscillations. as Xni2=Xn,ths2—ty=P(m). For y<1 the bifurcation

Fixed-point solutions to Eqg2) occur whenx, and the  equation is6= Spp+ (w/6)(X—X¢)2.
differencet, . ; —t, is constant. Primary saddle and node so- Equationg4) and(5), shown in Fig. 2, provide a template
lutions are single loop orbits of the form, . ;=x,=X; and  for understanding the organization of the PSNB and PD bi-
thr1—tha=P(m),P(m)=27m/w,m=1,2,3 ... . With these furcations; the map results agree qualitatively with numerical
conditions and substituting into Eq2a we obtain2yx?  bifurcation diagram of1) shown inset. Wherny=0.053 and
+2x;+P(m)=0. Real values ofx; require thatP(m) the forcingd is increased, the laser’s bifurcation sequence is
<3/2y; thus dissipation limits the maximum period of sub- the following: (a) P(1)-PSNB,(b) P(2)-PSNB,(c) PD bi-
harmonic solutions. Of the two solutions foy one is singu-  furcation of theP(1) node solution(d) and PD bifurcation
lar as y—0 but does not appear untl=0(1/y). We will of the P(2) node solution.
focus on the regular solution that in the limit—0 reduces Based on the bifurcation analysis in Fig. 2, we examine
to the result of SE13]: the dynamics before and after the onset of bi-instability. We
define 6= 6,,=1.275 as that value corresponding to point
(c), the “PD bifurcation of theP(1)-node solution.” Foré
< 6y the P(2) saddle is the only unstable orbit. F&r &y
there is the addition of thB(1)-flip saddle. The coexistence
A second existence condition comes from E2b), where  of the P(2)-regular saddle and the(1)-flip saddle deter-
we use thafcost;)|<1; this requires §/38)x?<1. Equa- mines a region of bi-instability.
tion (3) is substituted fox; to obtain a relationship between  In Fig. 3 we examine the bi-instability just after onset
the forcing and the period of the subharmonic orbit given bywhen §=1.3. The dark gray region corresponds to the basin
of attraction for the LAP(2)-node orbit. The light gray re-
gion corresponds to the SR{2)-PD orbit produced by the
flip bifurcation até= &;. In addition to the basins of attrac-
tion, a picture of a chaotic saddle was computed using the
where gy defines the primary saddle-no@@N) bifurcation  saddle-straddle procedure described in R&2]. It is ob-
(PSNB) point. A similar condition was derived by Schwartz served that points on the chaotic saddle asymptote to the
in Ref. [10], but here we are able to specify the condition SA-P(2)-flip saddle. This means that the stable manifold of
explicitly in terms of the physical parameters. the SAP(2)-flip saddle is contained in the chaotic saddle.

For a single value of; there are two possible valuestef Before showing which manifolds are explicitly involved
differentiated by singt;)>0(<<0). Linear stability shows that in the creation of the chaotic saddle, we remark that for
these correspond to the saddle and node solutions, respelues of < &,;, the basins of attraction for the(2)- and

—P(m
X = 2.()—112P<m>2+0<y2>. 3

5= Sep=15P(M)?+0(7). @
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SA-P(1)-flip

SA-P(2)-PD

FIG. 3. Attractor basins or SN period-2 orbitdark and PD
period-2 orbits(light) for §=1.3. The chaotic saddle is also shown
in white. See Fig. 4 for other figure details.

P(1)-node orbits look similar to that of Fig. 3, but with one
major difference. Even though the situation is bistable, there FIG. 5. For §=1.3 coexistence of the L&(2)-node solution
are no chaotic saddles or unstable objects which can produ@&d the SAP(2)-PD solution from the period-1 branch. “Images”
any crossings of manifolds. We reiterate tHaistability = of SA-P(2) are shown only with+. The axis and ranges are the
alone cannot be responsible for the appearance of any chagsame as those of Fig. 4.
otic dynamics

Figures 4 and 5 are period-2 Poincanaps that show the The LA-P(2) saddle is the same. However, now the
manifolds of the saddle orbits before and after 6. The  SA-P(1)-flip saddle and itsinstablemanifold are depicted
LA-P(2) saddle and its image after one period are overlaidcontrast to Fig. 5 where the the SA2)-PD orbit and
with the arrows. From Figs. 3-5, we see that the stable mangA-P(1)-flip saddle’s stable manifold are depicted
folds of the LAP(2) saddle define the basin boundary. Spe- The square highlights a homoclinic intersection of the
cifically, in Fig. 4 for 6< 4y, the left unstable manifold of |A-P(2) saddle’s stable and unstable manifolds; similar in-
the LA-P(2) saddle spirals to the stable LA2) node tersections exist but are not shown for the S@jHlip
(similarly for the “images”). The right unstable manifold saddle. Thus homoclinic intersections influence the dynamics
spirals in a complicated way to the stable 8A1) node. local to any P(m)-node orbit and its subsequent period-

Figure 5 shows the situation whe¥> 6y, (after the PD  doubled orbits. However, the global dynamics are controlled
bifurcation. The two new+ signs in the center show the by heteroclinic interactions. The circle highlights the
new SAP(2)-PD orbit and its image, resulting from the PD reverse-heteroclinic connection of the $41)-flip saddle’s
bifurcation of the SAP(1) node. The new manifold is the unstablemanifold with the LAP(2)-saddle’sstable mani-
stablemanifold of the new SARP(1)-flip saddle. A hetero- fold. This corresponds to the injection of trajectories into the
clinic connection is formed by the intersection of this stableLA-P(2) basin.The bursting seen in the discrete time-series
manifold with theunstablemanifold of the LAP(2) saddle. of Fig. 1 results from the reverse-heteroclinic intersection.
The intersection points of these manifolds determine the cha- We now summarize the sequence of bifurcations and con-
otic saddle shown by the white points in Fig. 3. nections. A forward-heteroclinic intersection forms immedi-

As the forcing is increased, the dynamics become muclately at the onset of bi-instabilitys= 5, between a
more complicated; Fig. 6 shows the manifolds &+ 1.57.

SAP(1)-flip =

FIG. 6. For §=1.57, homoclinic intersectionghoxed for the
FIG. 4. For$=1.0 coexistence of LA?(2)-node solution and LA-P(2) saddle and the reverse-heteroclinic intersection between
SA-P(1)-node solution. The windows shown are (—10,10) and the SAP(1) and LAP(2) saddleqcircled. The axis and ranges
In(1+y) e(—29,6). are the same as those of Fig. 4.
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period-2 regular saddle and a period-1 flip saddle. The forsection corresponds to a crisis event that sends the dynamics
ward heteroclinic intersection is responsible for a chaotidnto the LA-P(2) regime. As the LAP(2)-based chaotic
saddle resulting in complex transient phenomena in thattractor grows in collides with the original LR{2) saddle;
SA-P(1) basin of attraction. For a larger value of the forc-this crisis event sends trajectories back to the original
ing, a reverse-heteroclinic intersection is created. This agai®A-P(1) regime[11] directed by the forward-heteroclinic
leads to complex transient phenomena as the trajectory @&onnection. The resulting highly mixed dynamics is what we
injected into the LAP(2) basin. referred to as “global chaos” and as described in the intro-
For 6=1.57 the bursting transient eventually decays to fuction such dynamics is seen both in numerics and experi-

: ; ; ; ts in a variety of applications.
period-4 orbit created by a PD bifurcation of the IX2)  MeéN . . . .
node. Asé is increased, a period-doubling route to chaos, Thg analy3|s dqne was in the nelghborhpod of a PD bi-
furcation point. This suggests that the chaotic saddle may be

develops due to homoclinic intersections within this basin. bserved in a prechaotic parameter ranae experimentallv b
As the chaotic attractor grows there is an internal crisis suc ; prech paramete ge exp y by
observing the transient dynamics in a region near a PD op-

that some trajectories are injected back into the F§A) rating point
basin. This leads to sustained bursting as the preexistins Fingllp E '3(2) are useful to understand the oraanization
reverse-heteroclinic connection sends trajectories back out off the S%’an?j I5D bifurcations and will be ex Ioreo?further i
the SAP(1) basin. The basins are nhow connected such that | P .

. . . ater report. The well-known Ikeda m@p2] was derived
a spectral analysis of the resulting chaos has two dommarf[ . . . . _

. or a passive optical cavity. This contrasts E¢®, which
centers based on the original A1) and LAP(2) saddles. ; . X
) ; : . are derived for an active-laser cavity.
Localized chaodrestricted in phase spacdevelops in

both the SAP(1) basin and the LA?(2) basin due to ho- The authors would like to thank Y. Wood for help prepar-
moclinic intersections. However, global mixed-mode chaodng the figures, and T. Erneux and G. Kovacic for useful
such that the dynamics visits regions of phase space previliscussions. I.B.S. was supported by the Office of Naval Re-
ously delineated by these basins results from the existence search and T.W.C. by National Science Foundation Grant
two saddles or bi-instability. The reverse-heteroclinic inter-No. DMS-9803207.
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